There are numerous benefits of fasting and mimicked fasting. Below are a number of resources that you can explore to learn more about the benefits of fasting and fasting mimicking and the effects that these protocols have on the body.

Fasting and Fasting Mimicking

The Longevity Fasting Diet protocol is based on research from Dr. Valter Longo and his team at University of Southern California (USC) Longevity Institute. If you are interested in learning more about this research, explore the resources below. 

TED X - Dr Volter Longo on Fasting

 

Interview with Dr Volter Longo Ph.D. and Dr Mercola

 

Valter Longo, Ph.D. on Fasting-Mimicking Diet & Fasting for Longevity, Cancer & Multiple Sclerosis

  

Fasting and Cancer

Fasting and Cancer: Molecular Mechanisms and Clinical Application

The vulnerability of cancer cells to nutrient deprivation and their dependency on specific metabolites are emerging hallmarks of cancer. Fasting or fasting-mimicking diets (FMDs) lead to wide alterations in growth factors and in metabolite levels, generating environments that can reduce the capability of cancer cells to adapt and survive and thus improving the effects of cancer therapies. In addition, fasting or FMDs increase resistance to chemotherapy in normal but not cancer cells and promote regeneration in normal tissues, which could help prevent detrimental and potentially life-threatening side effects of treatments. While fasting is hardly tolerated by patients, both animal and clinical studies show that cycles of low-calorie FMDs are feasible and overall safe. Several clinical trials evaluating the effect of fasting or FMDs on treatment-emergent adverse events and on efficacy outcomes are ongoing. We propose that the combination of FMDs with chemotherapy, immunotherapy or other treatments represents a potentially promising strategy to increase treatment efficacy, prevent resistance acquisition and reduce side effects.

Read more 

 

mTOR: A Pharmacologic Target for Autophagy Regulation 

mTOR, a serine/threonine kinase, is a master regulator of cellular metabolism. mTOR regulates cell growth and proliferation in response to a wide range of cues, and its signaling pathway is deregulated in many human diseases. mTOR also plays a crucial role in regulating autophagy. This Review provides an overview of the mTOR signaling pathway, the mechanisms of mTOR in autophagy regulation, and the clinical implications of mTOR inhibitors in disease treatment.

Read more

 

Metformin and the mTOR inhibitor everolimus (RAD001) sensitize breast cancer cells to the cytotoxic effect of chemotherapeutic drugs in vitro

Metformin appears to interfere directly with cell proliferation and apoptosis in cancer cells in a non-insulin-mediated manner. One of the key mechanisms of metformin's action is the activation of adenosine monophosphate activated protein kinase (AMPK). AMPK is linked with the phosphatidylinositol 3-kinase (PI3K)/ phosphatase and tensin homolog (PTEN)/protein kinase B (AKT) pathway and mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinases (ERK) cascades--all known for being frequently dysregulated in breast cancer. Therefore, simultaneously targeting AMPK through metformin and the PI3K/AKT/mTOR pathway by an mTOR inhibitor could become a therapeutic approach. The aim of this study was to evaluate the anticancer effect of metformin alone and in combination with chemotherapeutic drugs and the mTOR inhibitor RAD001.

Metabolomic Responses of Guard Cells and Mesophyll Cells to Bicarbonate

Anthropogenic CO2 presently at 400 ppm is expected to reach 550 ppm in 2050, an increment expected to affect plant growth and productivity. Paired stomatal guard cells (GCs) are the gate-way for water, CO2, and pathogen, while mesophyll cells (MCs) represent the bulk cell-type of green leaves mainly for photosynthesis. We used the two different cell types, i.e., GCs and MCs from canola (Brassica napus) to profile metabolomic changes upon increased CO2 through supplementation with bicarbonate (HCO3 -). Two metabolomics platforms enabled quantification of 268 metabolites in a time-course study to reveal short-term responses. The HCO3 - responsive metabolomes of the cell types differed in their responsiveness. The MCs demonstrated increased amino acids, phenylpropanoids, redox metabolites, auxins and cytokinins, all of which were decreased in GCs in response to HCO3 -. In addition, the GCs showed differential increases of primary C-metabolites, N-metabolites (e.g., purines and amino acids), and defense-responsive pathways (e.g., alkaloids, phenolics, and flavonoids) as compared to the MCs, indicating differential C/N homeostasis in the cell-types. The metabolomics results provide insights into plant responses and crop productivity under future climatic changes where elevated CO2 conditions are to take center-stage.

Read more

 

mTOR Signalling in Growth Metabolism and Disease

The mechanistic Target of Rapamycin (mTOR) coordinates eukaryotic cell growth and metabolism with environmental inputs including nutrients and growth factors. Extensive research over the past two decades has established a central role for mTOR in regulating many fundamental cell processes, from protein synthesis to autophagy, and deregulated mTOR signaling is implicated in the progression of cancer and diabetes, as well as the aging process. Here, we review recent advances in our understanding of mTOR function, regulation, and importance in mammalian physiology. We also highlight how the mTOR-signaling network contributes to human disease, and discuss the current and future prospects for therapeutically targeting mTOR in the clinic.

Read more

 

Fasting and the Circadian Rhythm

Light and Food Influences - Biological Rhythms

The urban environment has changed vastly over past decades, which also has had an impact on our sleep and dietary patterns and possibly health outcomes. Some studies have shown that sleep duration and sleep quality has declined over past decades, especially in children. In parallel, our lifestyle and dietary patterns have also changed including more shift work, more meals outside the home or family setting and more irregular eating patterns, including breakfast skipping and late-night eating. This new area of research in nutritional sciences studying the impact of the timing of eating on health outcomes is called chrono-nutrition, and combines elements from nutritional research with chrono-biology. The objectives of this paper were to discuss secular trends in sleep patterns and related dietary patterns, introduce basic concepts and mechanisms of chrono-nutrition and discuss the evidence for the importance of sleep and chrono-nutrition in relation to health outcomes. Overall, chrono-nutrition could mediate the effects between sleep, diet and urbanisation, and more research is needed to elucidate the importance of chrono-nutrition for metabolic health and its impact on public health.

Read more

 

The Circadian Clock and Liver Function in Health and Disease

Each day, all organisms are subjected to changes in light intensity because of the Earth’s rotation around its own axis. To anticipate this geo-physical variability, and to appropriately respond biochemically, most species, including mammals, have evolved an approximate 24-hour endogenous timing mechanism known as the circadian clock (CC). The ‘clock’ is self-sustained, cell autonomous and present in every cell type. At the core of the clock resides the CC-oscillator, an exquisitely crafted transcriptional-translational feedback system. Remarkably, components of the CC-oscillator not only maintain daily rhythmicity of their own synthesis, but also generate temporal variability in the expression levels of numerous target genes through transcriptional, post-transcriptional and post-translational mechanisms, thus, ensuring proper chronological coordination in the functioning of cells, tissues and organs, including the liver. Indeed, a variety of physiologically critical hepatic functions and cellular processes are CC-controlled. Thus, it is not surprising that modern lifestyle factors (e.g.travel and jet lag, night and rotating shift work), which force ‘circadian misalignment’, have emerged as major contributors to global health problems including obesity, non-alcoholic fatty liver disease and steatohepatitis. Herein, we provide an overview of the CC-dependent pathways which play critical roles in mediating several hepatic functions under physiological conditions, and whose deregulation is implicated in chronic liver diseases including non-alcoholic steatohepatitis and alcohol-related liver disease.

Read more

 

Fasting and Stress

Glucose but not Protein or Fat Load Amplifies the Cortisol Response to Psychosocial Stress

We previously reported that glucose intake amplifies cortisol response to psychosocial stress and smoking in healthy young men, while low blood glucose levels prevented the stress-induced activation of the hypothalamus pituitary adrenal (HPA) axis. However, it remains unknown whether this modulation is specific for glucose load or a more common effect of energy availability. To elucidate this question, 37 healthy men, who fasted for at least 8 h before the experiment, were randomly assigned to four experimental groups, who received glucose (n = 8), protein (n = 10), fat (n = 10), and water (n = 9), one h before their exposure to the Trier Social Stress Test (TSST). Blood glucose levels were measured at baseline and following stress, while salivary cortisol was assessed repeatedly measured before after the TSST. The results show that both absolute cortisol levels and net cortisol increase were greater in the glucose group in comparison to the other groups (F(3,33) = 3.00, P < 0.05 and F(3,33) = 3.08, P < 0.05, respectively. No group differences were observed with respect to perceived stress and mood. Furthermore, the cortisol response was positively correlated with blood glucose changes (r = 0.49, P < 0.002). In conclusion, the results suggest a central mechanism responsible for regulation of energy balance and HPA axis activation, rather than peripheral mechanisms. We thus recommend controlling for blood glucose levels when studying HPA axis responsiveness.

Read More